### The Response of Energy Dispersive X-Ray Detectors

**Tobias Eggert** 

**TU München E16/Ketek GmbH** 







## The Response of Energy Dispersive X-Ray Detectors



#### Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

#### Part B Response of Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. Low Energy Measurements/Experimental Setup
- 3. Calculation of Spectral Contributions
- 4. Results
- 5. Resume



## Motivation



- Many discoveries and results of fundamental research are closely related to the quality of the instruments used
- Telescopes, Microscopes, Cameras
- New detector concepts enabled the discovery of many elementary particles: e<sup>+</sup>, ν, J/ψ
- Results are only reliable if the instrument is well understood
- Response function needed
- Detailed characterization and understanding of detector properties are important for both, users and manufacturers

# **Why Semiconductor Detectors?**



- Photons and charged particles ionize matter
- Gases: electron ion pairs are produced
- Semiconductors: electron hole pairs are produced
- Measurement of position and energy
- Pair creation energy in SC << ionization energy in gases
- High density of solids → high interaction probability
- Integration of transistors and read-out electronics

# **Semiconductor Detectors**

p-i-n configuration  $\rightarrow$  depletion zone

- Al  $\rightarrow$  saturation of free bonds
  - $\rightarrow$  contacts p<sup>+</sup>
  - $\rightarrow$  reflects visible light
- $\mathsf{p}^{\scriptscriptstyle +} \rightarrow$  maximum at the surface
  - $\rightarrow$  no dead layer
  - → high electric field strength
- e<sup>-</sup>-hole pairs generated by radiation
- charge separated and collected
- current mode: current prop. to flux and energy
- single photon counting: signal amplitude U=q/C

![](_page_4_Figure_12.jpeg)

## The Response of Energy Dispersive X-Ray Detectors

![](_page_5_Picture_1.jpeg)

#### Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

#### Part B Response of Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. Low Energy Measurements/Experimental Setup
- 3. Calculation of Spectral Contributions
- 4. Results
- 5. Resume

![](_page_5_Figure_13.jpeg)

# **Applications in Basic Research**

### **High Energy Physics**

![](_page_6_Picture_2.jpeg)

Strip or pixel detectors as inner trackers  $\rightarrow$  position resolution

# **Applications in Basic Research**

#### X-Ray Astronomy

![](_page_7_Picture_2.jpeg)

![](_page_7_Picture_3.jpeg)

Spectroscopy of cosmic x-ray sources Fully depleted pn-CCD on ESA's x-ray multi-mirror mission (XMM)

![](_page_8_Figure_1.jpeg)

![](_page_9_Figure_1.jpeg)

![](_page_10_Figure_1.jpeg)

![](_page_11_Figure_1.jpeg)

- Energy of fluorescence photon = difference of binding energies
- Moseleys Law:  $E_{\rm F}$  prop. to  $Z^2$
- Many transitions possible
- Transitions into K-shell:  $K_{\alpha,\beta}$  photons ("peaks")
- Transitions into L-shell:  $L_{\alpha \beta \gamma, \eta L}$  photons
- Higher fluorescence yield for high *Z* elements

### Application

X-Ray Fluorescence Analysis (XRF)

Excitation of sample with X-rays

#### XRF-Analyse (X-Ray Fluorescence)

Untersuchung eines Leichentuchs (Antinopolis, III. Jahrhundert n.Chr., Vatikanische Museen)

![](_page_12_Picture_5.jpeg)

![](_page_12_Figure_6.jpeg)

![](_page_12_Picture_7.jpeg)

Photographie des Detektor-Moduls

Application XRF with scanning electron microscopes

Excitation of sample with electrons

Elektronenstrahl-Mikroanalyse mit Silizium-Driftdetektoren

Untersuchung einer Meteoritenprobe

![](_page_13_Figure_4.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_14_Picture_1.jpeg)

![](_page_15_Picture_0.jpeg)

## The Response of Energy Dispersive X-Ray Detectors

![](_page_16_Picture_1.jpeg)

#### Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

#### Part B Response of Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. Low Energy Measurements/Experimental Setup
- 3. Calculation of Spectral Contributions
- 4. Results
- 5. Resume

![](_page_16_Figure_13.jpeg)

# **Planar Technology**

![](_page_17_Figure_1.jpeg)

- $\rightarrow$  Less diffusion of impurities
- $\rightarrow$  Low leakage currents and high charge carrier life-times

### **Important Semiconductor Properties**

|                                  |                     | Si                      | Ge                     | GaAs                  | SiC                |
|----------------------------------|---------------------|-------------------------|------------------------|-----------------------|--------------------|
| atomic number                    |                     | 14                      | 32                     | 31 / 33               | 14 /12             |
| atomic weight                    |                     | 28.09                   | 72.59                  | 144.63                | 40                 |
| density                          | g / cm <sup>3</sup> | 2.33                    | 5.33                   | 5.32                  | 3.21               |
| band gap (RT)                    | eV                  | 1.12                    | 0.66                   | 1.42                  | 3.0                |
| energy for e-h pair              | eV                  | 3.65                    | 2.85                   | 4.2                   | ~8.5               |
| electron mobility $\mu_{ m e}$   | cm <sup>2</sup> /Vs | 1500                    | 3900                   | 8500                  | ~ 1000             |
| hole mobility $\mu_{ m h}$       | cm <sup>2</sup> /Vs | 450                     | 1900                   | 400                   | ~ 100              |
| minority carrier lifetime $\tau$ | S                   | 2.5 · 10 <sup>-3</sup>  | 10 <sup>-3</sup>       | ~ 10 <sup>-8</sup>    | ~ 10 <sup>-6</sup> |
| μτ – product (e)                 | cm <sup>2</sup> /V  | 2-5                     | 5                      | ~ 10 <sup>-4</sup>    | ~ 10 <sup>-3</sup> |
| $\mu\tau$ – product (h)          | cm <sup>2</sup> /V  | 1 – 2                   | 2                      | ~ 10 <sup>-5</sup>    | ~ 10 <sup>-4</sup> |
| intrinsic resistivity            | Ωcm                 | 2.3 · 10 <sup>5</sup>   | 47                     | 10 <sup>8</sup>       | > 10 <sup>12</sup> |
| intrinsic carrier conc.          | cm <sup>-3</sup>    | 1.45 · 10 <sup>10</sup> | 2.5 · 10 <sup>13</sup> | 1.8 · 10 <sup>6</sup> | 10-6               |

### **pn-Junction for Detector Applications**

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_2.jpeg)

diffusion of majority carriers

formation of depletion layers

fixed space charge of acceptors (A<sup>-</sup>) and donors (D<sup>+</sup>)

electric field due to space charge

band bending of the junction built in voltage

### **Properties of Si pn-Junction Detectors**

![](_page_20_Figure_1.jpeg)

## The Response of Energy Dispersive X-Ray Detectors

![](_page_21_Picture_1.jpeg)

#### Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics, Spectra, Efficiency Limits

#### Part B Response of Silicon Drift Detectors

- 2.5 (2.0 0001)/1) 1.0 0.5 0.5 0.0
- 1. Silicon Drift Detectors
- 2. Low Energy Measurements/Experimental Setup
- 3. Calculation of Spectral Contributions
- 4. Results
- 5. Resume

![](_page_22_Figure_0.jpeg)

# **Requirements on Spectrometers**

![](_page_23_Figure_1.jpeg)

## **Spectrum of Martian Soil**

![](_page_24_Figure_1.jpeg)

## **Spectrum of Martian Soil**

![](_page_25_Figure_1.jpeg)

# Absorption Lengths of Si + Al

![](_page_26_Figure_1.jpeg)

## **Quantum Efficiency**

 $\epsilon$  = interaction probability within depletedSi bulk

![](_page_27_Figure_2.jpeg)

## The Response of Energy Dispersive X-Ray Detectors

![](_page_28_Picture_1.jpeg)

#### Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics, Spectra, Efficiency Limits

#### Part B Response of Silicon Drift Detectors

![](_page_28_Figure_8.jpeg)

- 1. Silicon Drift Detectors
- 2. Low Energy Measurements/Experimental Setup
- 3. Calculation of Spectral Contributions
- 4. Results
- 5. Resume

# Silicon Drift Detector (SDD)

- Depletion from back contact towards bulk contact (n<sup>+</sup>, not shown)
- Vertical and lateral drift field  $\rightarrow$  small anode size  $\rightarrow$  low capacitance
- High resistivity, high purity n-type silicon (10<sup>12</sup>/cm<sup>3</sup>)
- Drift rings at the front side, integrated voltage dividers
- Homogeneous entrance window at the back side

![](_page_29_Figure_6.jpeg)

# **Drift Field Configuration**

![](_page_30_Figure_1.jpeg)

## **Mounted Devices**

• 5 mm<sup>2</sup>, 10 mm<sup>2</sup>

![](_page_31_Picture_2.jpeg)

 7 channel detector with 35 mm<sup>2</sup>

![](_page_31_Picture_4.jpeg)

### **Measured Low Energy Spectra**

![](_page_32_Figure_1.jpeg)

# Motivation

- What limits the detection of low energy X-rays?
- Is it noise?
- Is it the entrance window?
- Reasons for charge losses?
- Effect of aluminum coating?
- Effect of p+-contact?
- How can the background be reduced?
- Previous models explain either losses of primary of or secondary electrons

# **Entrance Window Configuration**

AI (30 nm or 100 nm) Si bulk completely depleted Maximum of p<sup>+</sup> concentration at the Si-Al boundary (Result of previous optimizations)

**p**<sup>+</sup> Si  $n^-$  Si  $(N_{\rm D} = 10^{12} \,{\rm cm}^{-3})$ 

# <sup>55</sup>Mn Spectrum

![](_page_35_Figure_1.jpeg)
## The Response of Energy Dispersive X-Ray Detectors



### Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

### Part B Response of Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. Low Energy Measurements/Experimental Setup
- 3. Calculation of Spectral Contributions
- 4. Results
- 5. Resume



# Experiment

X-rays in the energy range 200 eV - 2 keV required

Radioactive sources > 5.9 keV

X-ray tubes: additional background due to bremsstrahlung very low fluorescence yields Synchrotrons are the cleanest X-ray sources

- •Energy selectable
- •High beam intensity
- Very low background
- •Limited beam time



## Experiment



## Experiment



## **Typical Spectrum**





## **Fitting with an Analytical Function**



## The Response of Energy Dispersive X-Ray Detectors



### Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

### Part B Response of Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. Low Energy Measurements/Experimental Setup
- 3. Calculation of Spectral Contributions
- 4. Results
- 5. Resume





Interaction always by **photoelectric effect** 

Compton effect unlikely

e<sup>-</sup>e<sup>+</sup> pair creation impossible



















### **Calculation of Spectra**



### **Absorption Near the Boundary**



### **Absorption Near the Boundary**

### Al p<sup>+</sup> Si n<sup>-</sup> Si

Homogeneously charged electron cloud  $\rightarrow$  Auger and photo electrons not separated  $\rightarrow$  radius *r* fit parameter  $\rightarrow$  model inaccurate

Other models introduce energy dependent charge collection efficiency → arbitrary, no predictions can be made



## **Electron Ranges**

"Projected" ranges (after *lskef*) Valid for primary electrons



# **Primary Electrons**



# **Primary Electrons**



11:04

# **Secondary Electrons**



### **Absorption Probability Densities**







### **Calculation of Background Spectra**



## **Calculation of Background Spectra**





# **Calculation of Response**

- X-ray energy  $E_0$  is known
- Fano noise =  $(F w E_0)^{1/2}$
- Electronic noise measured separately
- Only secondary electron charge cloud radius is varied in the fit procedures
- Input: beam energy, noise, number of counts
- Output: intensities and spectral distribution of all features (main peak, background, escape peak)
- Uncertainty in primary electron ranges ≈ 25 %
- p<sup>+</sup> may reduce charge collection efficiency close to the boundary

## The Response of Energy Dispersive X-Ray Detectors



### Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

### Part B Response of Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. Low Energy Measurements/Experimental Setup
- 3. Calculation of Spectral Contributions
- 4. Results
- 5. Resume








## Radii of Secondary Electron Charge Clouds



# Radii of Secondary Electron Charge Clouds



# <sup>55</sup>Mn K $_{\alpha}$ 5.9 keV-Spectrum



# **Results**

- Good agreement between measurements and calculated spectra
- Shelf and shoulder not calculated separately
- Distinction between layer, where ICC always occurs and layer, where ICC is possible
- Background dominated by secondary electron cloud with r = (180±10) nm
- Thinner aluminum has only little effect

# Proposed Configuration of Entrance Window



### **Expected Spectra**



 $\rightarrow$  Much lower secondary electron background, no electrons from metallization

# <sup>55</sup>Mn 5.9 keV Spectrum



## The Response of Energy Dispersive X-Ray Detectors



#### Part A Principles of Semiconductor Detectors

- 1. Basic Principles
- 2. Typical Applications
- 3. Planar Technology
- 4. Read-out Electronics

#### Part B Response of Silicon Drift Detectors

- 1. Silicon Drift Detectors
- 2. Low Energy Measurements/Experimental Setup
- 3. Calculation of Spectral Contributions
- 4. Results

5. Resume



### Resume

- Spectra with  $E_0 < 300 \text{ eV}$  deteriorated by background
- Model for background constructed
- Only one free parameter of the model
- Simulation successful → Responses of future devices can be predicted and are promising
- Model also suited for entrance window configurations of other detectors
- (no influence of p<sup>+</sup>)
- More information: www.ketek.biz www.ketek.net



#### **Dead layer thicknesses**

